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Abstract
This study determined the magnitude and direction of stream total nitrogen trends and investigated the
possible drivers of stream total nitrogen trends for the Catskill Mountain region of NY from 2002 to 2022.
Four study sites, representing a land use gradient of higher elevation upland forests and lower elevation
agricultural and residential areas, were examined to determine the magnitude and direction of TN trends
and assist with the characterization of possible trend drivers. Statistical analyses, including summary
statistics and Kendall trend tests, were conducted to determine trends; a literature review and land cover
analysis was completed to assist in the investigation of possible trend drivers. Results indicated an overall
decreasing trend in TN concentrations at all sites; trend magnitude and strength varied among the sites
and statistical analysis, highlighting the importance of accounting for land cover, flow, and seasonality in
long term trend analysis. Upstream and downstream sites exhibited differences in TN during summer low
flow conditions, suggesting potential land use influences on stream TN. Variation in TN trends and
concentrations were partially attributed to land cover, forest composition, watershed management, flow,
and variations in atmospheric deposition. Challenges in quantifying the influence of specific drivers arose
due to the nonlinear nature of watersheds and variations in local characteristics. The effectiveness of Best
Management Practices (BMPs) and Source Water Protection Programs (SRPs) was challenging to
quantify due to confounding variables, time lags, and potential for legacy N storage. This study
underscored the importance of comprehensive water quality monitoring for informed source water supply
management, particularly in regions with varying land uses. Characterizing nitrogen sources, fate, and
export mechanisms is essential for tailoring effective watershed-specific management programs, ensuring
water quality preservation for both water supplies and downstream ecosystems. This study advocates for
long-term water quality monitoring, emphasizing the need to understand nitrogen dynamics in the context
of both anthropogenic and natural disturbances. Maintaining multidecadal datasets and quantifying results
from water quality management programs are crucial for directing future management strategies. Future
research could focus on quantifying the influence of potential drivers of stream total nitrogen trends.

This study sought to determine the magnitude and direction of stream total nitrogen
trends and investigate the possible drivers of stream total nitrogen trends for stream sites in the
Catskill Mountain region of New York (NY) from 2002 to 2022. The Catskill Mountain region
contains the source water supply for New York City, serving 9 million people 1 billion gallons of
water daily. This is an unfiltered surface drinking water supply requiring watershed management
to maintain water quality. Unfiltered surface water supplies are subject to impacts from storm
events, land use, agriculture, and point/nonpoint source pollutants. Treatment techniques such as
ultraviolet disinfection and chlorination may not suffice for disinfection, so further water quality



monitoring and analysis are necessary to determine possible trends for management. Long term
water quality trend analysis can assist in both short and long term watershed planning. Total
nitrogen (TN) was chosen as the analyte of study for this paper as humans have altered the N
cycle through land use changes, food production and energy production. Increases of N to the
environment can lead to eutrophication or anoxia, posing challenges for a water supply.

The overall study region is within the Catskill Mountain region of NY; specifically
targeted for this analysis were New York City Department of Environmental Protection (NYC
DEP) hydrology sampling sites leading to the Cannonsville Reservoir, which has exhibited
eutrophic characteristics in the past. Four study sites, representing a land use gradient of higher
elevation upland forests and lower elevation agricultural and residential areas, were examined to
determine the magnitude and direction of TN trends and assist with the characterization of
possible trend drivers. Upstream sites were primarily forested and served as the “control” to
compare to more developed downstream sites, subject to further anthropogenic impacts from
land use (Wastewater Treatment Plants (WWTPs), agriculture). Since the early 1990s, this
region has actively managed resources to promote water quality; program implementation has
included land acquisition, watershed protection programs, wastewater treatment plant upgrades,
implementation of BMPs and stream restoration projects.

Figure 1. Overview of region of study in NY



Figure 2. Upper Delaware subbasin, with thirteen Cannonsville Reservoir subwatersheds, sample
sites, & relevant sites

Grab samples were collected by NYC DEP staff on a monthly schedule and analyzed in a
certified NYC DEP lab according to standard operating procedures and a quality assurance
program. The majority of the missing data is from 2020-2021, coinciding with field sampling
reductions due to the Covid-19 pandemic. Sample sites were chosen based on consistency in the
lab method for the time period, proximity to USGS gauge stations with flow records, and to set
up a land use gradient. Table 2 displays the expected vs. actual number of TN samples used for
trend analysis based on the sampling schedule.



To investigate the possible drivers of TN trends within the study area, a comprehensive
literature review was conducted to review prior research of nitrogen dynamics within the Catskill
Mountain region. To assist in the characterization of possible TN trend drivers, summary
statistics were developed for TN and discharge; additionally, land cover maps were generated in
ArcGIS Pro using the National Land Cover Database 2021 dataset. Land cover percent areas
were calculated and land cover patterns were identified for sample sites and adjacent
subwatersheds. This study analyzed stream TN concentrations (mg/L); TN, as defined for this
study, encompassed organic nitrogen, inorganic nitrogen, and ammonia. Summary statistics were
generated for TN and discharge to assist in trend analysis. Statistical analysis was performed to
determine the magnitude and direction of TN trends; Mann Kendall and Seasonal Kendall tests
were chosen as they can account for missing data and outliers. The Seasonal Kendall test is a
modified version of the Mann Kendall and accounts for seasonality effects; a period of 12 was
used. All Kendall analysis was completed using Python and user generated scripts.

Figure 4 displays the overall land cover analysis for the overall region of study. The
primary land cover type is forest, followed by pasture and hay production to support dairy
farming. Figure 5 displays a closer view of the sample sites and their land cover analysis.
Upstream site Town Brook tributary was 100% forested for contributing watershed area;
upstream site Town Brook stream was primarily forested with some pasture/hay production.
Both sites were not impacted by WWTPs but it is possible that Town Brook stream saw impacts
from septic releases. Downstream sites Delhi River and Beerston river were impacted by
residential development, WWTPs, and pasture/hay. The literature review highlighted some
potential drivers of TN for this region which included land cover type and history, climate
variability, variation in N inputs/sinks/export pathways, forest cover and composition, soil
composition, hydrology and topography.



Figure 4. Land cover analysis for region of study, NCLD 2021 dataset

Figure 5. Land cover analysis for sample sites, NCLD 2021 dataset

Figures 6 and 7 display the TN summary statistics for upstream and downstream sites. Figures 8
and 9 display discharge summary statistics for upstream and downstream sites. For upstream



sites, peak TN occurred in winter-spring and peak discharge occurred in early spring; lowest TN
was observed during summer low flow conditions For downstream sites, peak TN occurred
during winter and peak discharge occurred during late winter-early spring; TN remained elevated
throughout the remainder of the year. Summary statistics suggested that the main difference
between upstream and downstream TN occurred during summer low flow conditions, as
downstream site TN remained elevated throughout the summer compared to upstream sites,
suggesting a possible difference in TN drivers based on land cover.

Figures 14-17 display monthly TN and average monthly discharge for the study sites. Town
Brook tributary saw a multi year TN pulse from 2006-2008 following a selective harvest and
insect defoliation event. This event highlights how land cover disturbance can impact stream TN
concentrations on a multi year scale. Data gaps were due to sample analysis error, sample
collection error, and sampling reductions during the Covid-19 pandemic.

Mann and Seasonal Kendall TN trend analyses were completed using observed TN data
and flow-adjusted TN data, providing insights into overall patterns and trends for each site.
Mann Kendall, Seasonal Kendall (observed), and Seasonal Kendall (flow-adjusted) TN trend
results showed statistically significant decreasing trends. While all sites exhibited a significant
decreasing trend, variations in the magnitude (sen slope) and significance levels (p values) were
observed across the three tests. It was determined that the seasonal flow adjusted test was most
appropriate for this analysis. Site Town Brook stream exhibited the strongest decreasing trend.
Tau values, indicating the strength of correlation in time series data, were negative for all sites,
confirming a strong negative correlation and the strength of the decreasing trend.



Total annual nitrogen deposition estimates from NY68 showed a decline of about 2 kg/ha,
dropping from 6.35 to 4.22 kg/ha from 2002 to 2022. This suggests a potential reduction in
annual wet and dry nitrogen deposition for NY68 over the study period. Further analysis was
required to detect any trends in depositions data. Atmospheric deposition data from the NADP
website for NY68 were gathered for annual estimates of wet and dry total nitrogen (TN)
deposition (kg/ha), annual nitrate concentrations (kg/ha and mg/L), annual ammonium
concentrations (kg/ha and mg/L), and precipitation (cm) for a Mann Kendall analysis. Nitrate
concentration showed the strongest statistically significant decreasing trend among all variables
studied; TN (kg/ha) and Nitrate (kg/ha) were found to be decreasing while ammonium (kg/ha
and mg/L) and precipitation showed no trend.

TN concentrations varied among sites, with downstream sites showing higher overall TN
levels, possibly due to additional inputs from wastewater or agricultural runoff when compared
to primarily forested upstream sites. Statistical analysis revealed decreasing TN trends across all
sites, with upstream sites showing stronger declines. However, trend interpretation was complex
due to confounding variables such as seasonality, flow, and climate which can impact water
quality trend analysis. Possible drivers of TN trends for this region can include forest
composition, disturbance events, land use, and atmospheric deposition. The impact of forest
disturbance on TN concentrations was observed in a pulse in stream N at Town Brook tributary.
Despite reductions in nitrogen emissions, legacy effects and complex interactions with climate
and land use persist, affecting TN dynamics in streams. Challenges in this study included
quantifying the influence of individual trend drivers and distinguishing their effects from natural
variability.

Land management efforts, including source water protection programs, may have
contributed to declining TN trends in the region. However, variables such as freeze-thaw cycles,
and climate change effects on hydrology and nutrient cycling remain. Long-term monitoring
programs are essential for understanding and mitigating the impacts of nitrogen dynamics on
water quality and ecosystem health. Overall, the study underscores the importance of considering
multiple drivers and temporal scales in analyzing TN trends for effective watershed management
and source water preservation in the Catskill Mountain region.

The study sought to analyze trends in total nitrogen (TN) concentrations across streams in
the Catskill Mountain region, focusing on understanding magnitude, direction, and potential
drivers of these trends. Through statistical analysis and literature review, the study found
decreasing TN trends across all sites, with variations in trend interpretation necessitating
additional analyses like observed Mann Kendall and flow-adjusted Seasonal Kendall. Varied TN
dynamics between upstream forested and downstream developed sites highlighted potential
anthropogenic influences such as wastewater treatment plants, agriculture, and land use changes.
The complexity of nutrient dynamics, influenced by factors like land cover, hydrology, and
climate, underscores the challenge of disentangling the impacts of land management programs
from other variables. Long-term monitoring, encompassing multidecadal datasets and diverse
environmental factors, is crucial for understanding and managing water quality in the region.



Moving forward, future research could focus on quantifying the local impacts of Best
Management Practices (BMPs) and Sustainable Resource Practices (SRPs) on TN
concentrations, necessitating tailored study design to account for confounding variables.
Additionally, monitoring N:P ratios, investigating TN dynamics during low and high flows, and
developing comprehensive datasets on nitrogen storage, deposition rates, and land use variables
could further enhance understanding of TN trends and their drivers in the Catskill Mountain
region. Ultimately, maintaining water quality balance is essential for both the local water supply
and downstream communities, necessitating a nuanced approach that considers the sources, fate,
and management strategies related to nitrogen in terrestrial and aquatic ecosystems.
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